\(\int \frac {\sqrt {\sin (e+f x)}}{\sqrt {b \sec (e+f x)}} \, dx\) [463]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 51 \[ \int \frac {\sqrt {\sin (e+f x)}}{\sqrt {b \sec (e+f x)}} \, dx=\frac {E\left (\left .e-\frac {\pi }{4}+f x\right |2\right ) \sqrt {\sin (e+f x)}}{f \sqrt {b \sec (e+f x)} \sqrt {\sin (2 e+2 f x)}} \]

[Out]

-(sin(e+1/4*Pi+f*x)^2)^(1/2)/sin(e+1/4*Pi+f*x)*EllipticE(cos(e+1/4*Pi+f*x),2^(1/2))*sin(f*x+e)^(1/2)/f/(b*sec(
f*x+e))^(1/2)/sin(2*f*x+2*e)^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {2665, 2652, 2719} \[ \int \frac {\sqrt {\sin (e+f x)}}{\sqrt {b \sec (e+f x)}} \, dx=\frac {\sqrt {\sin (e+f x)} E\left (\left .e+f x-\frac {\pi }{4}\right |2\right )}{f \sqrt {\sin (2 e+2 f x)} \sqrt {b \sec (e+f x)}} \]

[In]

Int[Sqrt[Sin[e + f*x]]/Sqrt[b*Sec[e + f*x]],x]

[Out]

(EllipticE[e - Pi/4 + f*x, 2]*Sqrt[Sin[e + f*x]])/(f*Sqrt[b*Sec[e + f*x]]*Sqrt[Sin[2*e + 2*f*x]])

Rule 2652

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a*Sin[e +
f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e + 2*f*x]]), Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f},
 x]

Rule 2665

Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(b*Cos[e + f*
x])^n*(b*Sec[e + f*x])^n, Int[(a*Sin[e + f*x])^m/(b*Cos[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, m, n}, x] &&
 IntegerQ[m - 1/2] && IntegerQ[n - 1/2]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sqrt {b \cos (e+f x)} \sqrt {\sin (e+f x)} \, dx}{\sqrt {b \cos (e+f x)} \sqrt {b \sec (e+f x)}} \\ & = \frac {\sqrt {\sin (e+f x)} \int \sqrt {\sin (2 e+2 f x)} \, dx}{\sqrt {b \sec (e+f x)} \sqrt {\sin (2 e+2 f x)}} \\ & = \frac {E\left (\left .e-\frac {\pi }{4}+f x\right |2\right ) \sqrt {\sin (e+f x)}}{f \sqrt {b \sec (e+f x)} \sqrt {\sin (2 e+2 f x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.15 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.18 \[ \int \frac {\sqrt {\sin (e+f x)}}{\sqrt {b \sec (e+f x)}} \, dx=-\frac {b \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{4},\frac {1}{2},\sec ^2(e+f x)\right ) \sqrt [4]{-\tan ^2(e+f x)}}{f (b \sec (e+f x))^{3/2} \sqrt {\sin (e+f x)}} \]

[In]

Integrate[Sqrt[Sin[e + f*x]]/Sqrt[b*Sec[e + f*x]],x]

[Out]

-((b*Hypergeometric2F1[-1/2, 1/4, 1/2, Sec[e + f*x]^2]*(-Tan[e + f*x]^2)^(1/4))/(f*(b*Sec[e + f*x])^(3/2)*Sqrt
[Sin[e + f*x]]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(370\) vs. \(2(71)=142\).

Time = 0.84 (sec) , antiderivative size = 371, normalized size of antiderivative = 7.27

method result size
default \(-\frac {\sqrt {2}\, \left (2 \sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}\, \sqrt {\cot \left (f x +e \right )-\csc \left (f x +e \right )+1}\, \sqrt {\cot \left (f x +e \right )-\csc \left (f x +e \right )}\, E\left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {\sqrt {2}}{2}\right )-\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}\, \sqrt {\cot \left (f x +e \right )-\csc \left (f x +e \right )+1}\, \sqrt {\cot \left (f x +e \right )-\csc \left (f x +e \right )}\, F\left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {\sqrt {2}}{2}\right )+2 \sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}\, \sqrt {\cot \left (f x +e \right )-\csc \left (f x +e \right )+1}\, \sqrt {\cot \left (f x +e \right )-\csc \left (f x +e \right )}\, E\left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {\sqrt {2}}{2}\right ) \sec \left (f x +e \right )-\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}\, \sqrt {\cot \left (f x +e \right )-\csc \left (f x +e \right )+1}\, \sqrt {\cot \left (f x +e \right )-\csc \left (f x +e \right )}\, F\left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {\sqrt {2}}{2}\right ) \sec \left (f x +e \right )+\sqrt {2}\, \cos \left (f x +e \right )-\sqrt {2}\right )}{2 f \sqrt {b \sec \left (f x +e \right )}\, \sqrt {\sin \left (f x +e \right )}}\) \(371\)

[In]

int(sin(f*x+e)^(1/2)/(b*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/f*2^(1/2)/(b*sec(f*x+e))^(1/2)/sin(f*x+e)^(1/2)*(2*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(cot(f*x+e)-csc(f*x+e
)+1)^(1/2)*(cot(f*x+e)-csc(f*x+e))^(1/2)*EllipticE((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2*2^(1/2))-(-cot(f*x+e)+
csc(f*x+e)+1)^(1/2)*(cot(f*x+e)-csc(f*x+e)+1)^(1/2)*(cot(f*x+e)-csc(f*x+e))^(1/2)*EllipticF((-cot(f*x+e)+csc(f
*x+e)+1)^(1/2),1/2*2^(1/2))+2*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(cot(f*x+e)-csc(f*x+e)+1)^(1/2)*(cot(f*x+e)-csc
(f*x+e))^(1/2)*EllipticE((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2*2^(1/2))*sec(f*x+e)-(-cot(f*x+e)+csc(f*x+e)+1)^(
1/2)*(cot(f*x+e)-csc(f*x+e)+1)^(1/2)*(cot(f*x+e)-csc(f*x+e))^(1/2)*EllipticF((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),
1/2*2^(1/2))*sec(f*x+e)+2^(1/2)*cos(f*x+e)-2^(1/2))

Fricas [F]

\[ \int \frac {\sqrt {\sin (e+f x)}}{\sqrt {b \sec (e+f x)}} \, dx=\int { \frac {\sqrt {\sin \left (f x + e\right )}}{\sqrt {b \sec \left (f x + e\right )}} \,d x } \]

[In]

integrate(sin(f*x+e)^(1/2)/(b*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(f*x + e))*sqrt(sin(f*x + e))/(b*sec(f*x + e)), x)

Sympy [F]

\[ \int \frac {\sqrt {\sin (e+f x)}}{\sqrt {b \sec (e+f x)}} \, dx=\int \frac {\sqrt {\sin {\left (e + f x \right )}}}{\sqrt {b \sec {\left (e + f x \right )}}}\, dx \]

[In]

integrate(sin(f*x+e)**(1/2)/(b*sec(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(sin(e + f*x))/sqrt(b*sec(e + f*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {\sin (e+f x)}}{\sqrt {b \sec (e+f x)}} \, dx=\int { \frac {\sqrt {\sin \left (f x + e\right )}}{\sqrt {b \sec \left (f x + e\right )}} \,d x } \]

[In]

integrate(sin(f*x+e)^(1/2)/(b*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(sin(f*x + e))/sqrt(b*sec(f*x + e)), x)

Giac [F]

\[ \int \frac {\sqrt {\sin (e+f x)}}{\sqrt {b \sec (e+f x)}} \, dx=\int { \frac {\sqrt {\sin \left (f x + e\right )}}{\sqrt {b \sec \left (f x + e\right )}} \,d x } \]

[In]

integrate(sin(f*x+e)^(1/2)/(b*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(sin(f*x + e))/sqrt(b*sec(f*x + e)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sin (e+f x)}}{\sqrt {b \sec (e+f x)}} \, dx=\int \frac {\sqrt {\sin \left (e+f\,x\right )}}{\sqrt {\frac {b}{\cos \left (e+f\,x\right )}}} \,d x \]

[In]

int(sin(e + f*x)^(1/2)/(b/cos(e + f*x))^(1/2),x)

[Out]

int(sin(e + f*x)^(1/2)/(b/cos(e + f*x))^(1/2), x)